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Abstract
In this work, we present a model to describe the nonlinear response to a dc
electrical current of a two-dimensional electron system subjected to magnetic
and microwave fields. Considering the separation of the electron coordinates
into the non-commuting relative and guiding center coordinates, we obtain
a unitary transformation that exactly solves the time-dependent Schrödinger
equation in the presence of arbitrarily strong electric, magnetic and microwave
fields. Based on this formalism, we provide a Kubo-like formula that takes into
account the oscillatory Floquet structure of the problem. We discuss results
related to the recently discovered zero-resistance states and to the microwave-
induced resistivity oscillations and the Hall-induced resistivity oscillations.

PACS numbers: 72.40.+w, 73.21.Cd, 75.47.−m, 73.43.−f

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Non-equilibrium magnetotransport in high mobility two-dimensional electron systems (2DES)
has acquired great experimental and theoretical interest. Recently, two experimental groups
[1–4] have reported the unexpected discovery of zero-resistance states (ZRS) when high
mobility GaAs/AlxGa1−x As heterostructures in weak magnetic fields were exposed to
millimeter irradiation. Unlike the strong magnetic field regime, the Hall resistance is not
quantized, but the magnetoresistance exhibits strong oscillations. These microwave-induced
oscillations (MIRO) are periodic in εac = ω/ωc, where ω and ωc are the microwave and
cyclotron frequencies respectively. The series of minima formed at εac = j + δac, with
j = 1, 2, 3...., and δac < 1/2 depends on the parameters of the samples: in the experiments of
Zudov et al [1, 2] it was found δac ≈ 1

2 whereas as for Mani et al [3, 4], δac ≈ 1
4 . Our current

understanding of this phenomenon rests upon models that predict the existence of negative
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resistance (NRS). It was argued that negative resistance induces the formation of current
domains, yielding an instability that drives the system into a ZRS [5]. Nowadays two distinct
mechanisms that produce negative longitudinal conductance are known: (i) the impurity
scattering mechanism, which is caused by the disorder-assisted absorption and emission
of microwaves [6–14], and (ii) the distribution function mechanism, according to which
the microwave absorption modifies the electron distribution function leading to a negative
longitudinal conductance [15–18]. Similar to MIRO, there are magnetoresistance oscillations
induced by the combined effects of microwave irradiation and periodic potential modulation
[19–21].

More recently, Hall-field-induced resistance oscillations (HIRO) have been observed
in high mobility samples in response to a strong dc electric current [22, 23]. The HIRO
oscillations are periodic in the inverse magnetic field, with the resistance maxima appearing
at integer values of the dimensionless parameter εdc = ωH/ωc. The Hall frequency
ωH = γ (2π/ne)

1/2 J x/e is associated with the energy h̄ωH = γRcE
cl
y , where the classical

Hall electric field is given by Ecl
y = BJx/ene, Rc is the cyclotron radius of the electrons at

the Fermi level and γ ∼ 1.63–2.18. These results were confirmed in the recent experiment by
Zhang et al [24], with a determination of the parameter γ ∼ 1.9. Additionally in this work
another notable nonlinear effect was found: in the regime of separated LLs a relative weak
dc current induces a dramatic reduction of the resistivity. Although MIRO and HIRO are
basically different phenomena, both rely on the commensurability of the cyclotron frequency
with a characteristic parameter, ω and ωH respectively. The study of HIRO permits us to
analyze resistivity as a function of εdc when both ωc and ωH are varied over a wide range of
frequencies. On the other hand, the MIRO studies are carried out performing ωc-sweeps at
fixed ω, because of the experimental difficulty in implementing ω-sweeps. Other interesting
examples of nonlinear magnetotransport experiments combine the microwave and the dc-
current excitations [25].

Some theoretical studies of the nonlinear transport properties under dc excitations have
recently appeared [26–28]. The aim of this work is to develop a model to describe both
the microwave and the nonlinear response to a dc electrical current of a 2DES placed on
a magnetic field. Considering the separation of the electron coordinates into its relative R
and guiding center X coordinates, we obtain a unitary transformation that exactly solves the
time-dependent Schrödinger equation in the presence of arbitrarily strong electric, magnetic
and microwave fields. Although the relative and guiding center coordinates commute the
Rx and Ry relative coordinates satisfy a non-commutative algebra (and similarly for the X
and Y projections of the relative coordinates). These properties are exploited to work out
a Kubo-like formula for the conductivity as a response to randomly distributed impurities.
Considering the case of weak dc excitation, we recover the linear response result with respect
to the electric field intensity. The MIRO can be studied in this limit. In the general nonlinear
regime, self-consistent expressions determine the longitudinal and Hall components of the
electric field in terms of the dc current density Jx . The differential resistance displays a
strong oscillatory behavior resulting from current-assisted electron scattering producing both
intra-LL and inter-LL transitions. As an application of our model we discuss results related
to the negative-resistance states and to the microwave-induced resistivity oscillations (MIRO)
and the Hall-induced resistivity oscillations (HIRO).

2. Model

We consider the nonlinear response to a dc electrical current density (Jx) of a 2DES placed
in a magnetic field and irradiated by microwaves. The electrons are subjected to: (1) a

2
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magnetic B = (0, 0, B), (2) an in-plane electric E = E (cos θ, sin θ, 0) and (3) microwave
fields. Additionally, the effects of the impurity scattering potential V have to be included;
hence the dynamics is governed by the Hamiltonian

H = H{B,E,ω} + V, (1)

where

H{B,E,ω} = 1

2m∗ �2 + eEdc · x, (2)

here m∗ is the effective electron mass. H{B,E,ω} includes the interaction with the dc electric
fields, and the interaction with the magnetic and microwave fields via the covariant momentum
� = −ih̄∇ + eA; with the vector potential selected as

A = −1

2
r × B + Re

[
Eω

ω
exp{−iωt}

]
. (3)

The impurity potential is decomposed in terms of its Fourier components

V (r) =
Ni∑
i

∫
d2q

(2π)2 V (q) exp[iq · (r − ri )], (4)

where ri is the position of the ith impurity and Ni is the number of impurities. The explicit
form of V (q) depends on the nature of the scatterers. For short-range neutral impurities [12]:
V (q) = 2πh̄2α/m∗, where α is the scattering length, and the impurity density is related to
the electron mobility according to the relation α2nimp = e/(4π2h̄µ). Instead, in the case of

a 2D screened Coulomb potential: V (q) = πh̄2qT F

m∗ e−qd/ (qT F + q), where d is the thickness
of the doped layer and qT F = e2m∗/(2πε0εbh̄

2). In this case the relation of the impurity
density to the electron mobility is approximated as nimp = 8e(kF d)3/(πh̄µ). Here we shall
only consider the case of neutral impurities.

A planar electron performs cyclotron and drifting motion in magnetic and electric fields. It
is then convenient to decompose the electron coordinate r into the guiding center X = (X, Y ),
and the relative coordinate R = (Rx, Ry), i.e. r = X + R, where R = (−�y/eB,�x/eB).
The commutation relations are

[Rx,Ry] = ih̄

eB
, [X, Y ] = −il2

B, [Xi,Rj ] = 0, (5)

with l2
B = h̄/eB. With this decomposition the X and Y coordinates become noncommutative

(similarly for Rx and Ry). The mathematical analysis of this kind of non-commutative
structures leads to interesting mathematical developments related to the exotic Galilei group
[29, 30].

Ignoring for a moment the impurity potential, it is possible to find a unitary transformation
	(W) = W	 that exactly solves the time-dependent Schrödinger equation: here 	(W) is the
solution of

h̄ωc

(
1
2 + a†a

)
	

(W)
µ,k = Eµ,k	

(W)
µ,k , (6)

µ labels the Landau levels and k is the eigenvalue of the transverse −X sin θ + Y cos θ center
of guide coordinate, and the ladder operator a is given by

a = 1√
2eB

(
�x − i�y

)
. (7)

The unitary transformation is given by

W(t) = exp
{ i

h̄
mξ̇ · X

}
exp

{ i

h̄
(mξ̇ − eξ × B) · R

}
exp

{
i
∫ t

L dt ′
}

, (8)

3
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where L is the classical Lagrangian

L = 1
2mξ̇ 2 + eξ̇ · A + eE · ξ, (9)

and ξ(t) solves the corresponding equations of motion. The energy eigenvalues in
equation (6) are readily determined as

Eµ = h̄ωc

(
1
2 + µ

)
+ Erad + ekEdc, Mod[h̄ω], (10)

with

Erad = e2E2
ω[1 + 2ωcRe(ε∗

x εy)/ω]

2m∗[(ω − ωc)2 + �2]
, (11)

here the microwave electric field is decomposed as Eω = Eω(εx, εy).
We now turn to the calculation of the current density. The velocities of the center guide

coordinates are obtained from the Heisenberg operator equations using the total Hamiltonian
in equation (1):

Ẋ = i

h̄
[H,X] = Ey

B
− l2

B

h̄

∂V

∂y
,

Ẏ = i

h̄
[H,Y ] = −Ex

B
+

l2
B

h̄

∂V

∂x
.

(12)

The current density is computed from the impurity and thermal average J = e〈Tr[ρ (t) V]〉
of the center of guide velocity V = (Ẋ, Ẏ ), weighted with the density matrix that satisfies the
von Neumann equation

i
∂

∂t
ρ = [H0 + V, ρ]. (13)

We shall now derive the Kubo–Greenwood formula for the current within the framework
of the linear response theory with respect to the impurity potential. The external field effects are
exactly taken into account through the exact wave function solution given. The Hamiltonian
is split into an unperturbed part H{B,Eω} and the perturbation V (r) exp(−δ|t |); note that we
added to the impurity potential a term exp(−δ|t |), with δ representing the rate at which the
perturbation is turned on and off. The density is similarly decomposed as ρ = ρ0 + �ρ, where
the unperturbed density matrix takes the form ρ0 = ∑

αf (Eα)|α〉〈α|; where f is the Fermi
distribution function. Following the usual procedure of the linear response formalism, the
matrix elements of �ρ, in the base given by states 	

(W)
µ,k , are worked out as

〈µ, k|�ρ|ν, k′〉 = 〈µ, k|V |ν, k′〉(fν,k′ − fµ,k)
1

Eν,k′ − Eµ,k + iδ
. (14)

Combining the previous equations, and assuming randomly distributed impurities, the average
current density is explicitly computed; as suggested by equation (12) the current is split into
drifting and impurity scattering contributions:

Ji ( 	E) = εij

ene

B
Ej + J (rad)

i ( 	E), (15)

with the impurity contribution given by

J (rad)
i ( 	E) = −enI

h̄
εij

∑
µν

∑
l

∫
d2q

(2π)2
qj |Jl(|�|)Vimp(	q)Dµν(q̃)|2

× [f (Eµ + ωq + lω) − f (Eν)]ρν(Eµ + lω + ωq). (16)

J (rad)
i is evaluated at arbitrary values of the electric field through the argument dependence of

ωq = el2
B(qyEx − qxEy). (17)

4
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In equation (16) Jl denotes the Legendre polynomials and its argument � arises from the
solution of the classical equations of motion for ξ and it is given by

� = ωcl
2
BeEω

ω(ω2 − ω2
c + iω�)

[ω(qxεx + qyεy) + iωc(qxεy − qyεx)]. (18)

The matrix elements Dµ,ν in equation (16) are given by

Dνµ(q̃) = 〈ν |D(q̃)| µ〉 = e− 1
2 |q̃|2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−q̃∗)µ−ν

√
ν!

µ!
Lµ−ν

ν (|q̃|2), µ > ν,

q̃ν−µ

√
µ!

ν!
Lν−µ

µ (|q̃|2), µ < ν,

(19)

with q̃ = (qx − iqy)/
√

2 and Lµ−ν
ν (|q̃|2) denotes the associated Laguerre polynomial.

For the density of states a Gaussian-type expression is justified [32–34]:

ρν(ωq + Eν − Eµ) =
√

π

2�2
exp

[
− (ωq + Eν − Eµ)2

2�2

]
, �2 = 2h̄2ωc

τs

. (20)

The single-particle scattering time τs is related to the transport scattering time τtr obtained
from the mobility according to the relation τs = τtr/β. In the case of short-range scatterers
τtr = τs and β = 1. In the case of long-range screened potential, βν depends on the filling
factor ν, e.g. βν=50 ≈ 13.5 [12].

The present formalism assumes that inelastic scattering processes can be neglected; this
approximation is expected to be valid for a sufficiently small temperature. If the inelastic
relaxation time τi fulfils the condition τtr 
 τi , then inelastic processes will not contribute to
the evaluation of the electron mobility. τtr can be estimated from µ = eτtr/m∗ as τtr ∼ 0.9 ns.
To get an order of magnitude estimation, let us consider inelastic phonon scattering; an
approximated expression for τi is given by [31]

1

τi

= 3m∗bkBT �2

16ρv2
s h̄

3 . (21)

Typical values are ρv2
s = 1.4 × 1011 J m−3, deformation potential � = 3 eV, Fang–Howard

parameter b ≈ 0.2 nm−1. The condition to neglect inelastic phonon processes is estimated as
T < 20 K. A detailed calculation for the electron scattering processes to τi has been carried
out in [17]; the results show that τi has a T −2 dependence, obtaining for T ∼ 1 K, τi ∼ 4 ns,
just slightly larger than τtr. It will be interesting to extend the present formalism to include
inelastic processes; this can be implemented if one adds the electron–phonon and electron–
electron potential interactions to the potential V in equation (1). At this stage one should not
ignore that there is an ongoing controversy in relation to the physical origin of the MIRO and
HIRO. (i) The impurity scattering mechanism [6–14] and (ii) the mechanism based on the
distribution function modified by inelastic processes [15–18] have been used to analyze both
the MIRO and HIRO; but it will be the case that the two processes apply in different regimes,
or that they play a complementary role [25].

The current in equation (15) applies, in general, to the nonlinear transport regime for an
arbitrary strength of the dc electric field. The linear response regime is recovered expanding
to first order in Ex (the zero-order term cancels because of the angular integration) to yield:
Jx = σxxEx and Jy = σyxEx , with σxy = σyx = en/B and

σxx = −enI

h̄

∑
µν

∑
l

∫
d2q

(2π)2
q2

y |Jl(|�|)Vimp(	q)Dµν(q̃)|2

× [f (Eµ + lω) − f (Eν)]ρν(Eµ + lω). (22)

5
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Figure 1. Longitudinal resistivity in the linear response regime (Jx 
 1) as a function of
εac = ω/ωc for three values of the electron mobility: µ ≈ 0.5 × 107 cm2 V−1 s−1 (dotted line),
µ ≈ 1.5 × 107 cm2 V−1 s−1 (dash-dotted line), and µ ≈ 2.5 × 107 cm2 V−1 s−1 (continuous
line). In the two former cases the oscillations follow a pattern with minima at εac = j + δac,
and maxima at εac = j − δac, adjusted with δac ≈ 1/5. NRS only appear when µ > µth ∼
1.5 × 107 cm2 V−1 s−1. The selected parameters are: m∗ = 0.0635me, T ≈ 1 K, f = 100 GHz,
| 	Eω| ≈ 2.5 V cm−1, nI = 1.5 × 1011 cm−2, and ne = 3.7 × 1011 cm−2.

The corresponding resistivities are obtained from the expression ρxx = σxx

/(
σ 2

xx + σ 2
xy

)
and ρxy = σxy

/(
σ 2

xx + σ 2
xy

)
. The relation σxy � σxx holds in general, hence it follows that

ρxx ∝ σxx , and the longitudinal resistivity follows the same oscillation pattern as that of σxx .
We first consider an example of MIRO. The system is microwave irradiated and we

assume the linear response limit with respect to the dc current; Jx 
 1 allow us to use
equation (22). For the microwave ac-induced oscillations a convenient control parameter
is the ratio of microwave to the cyclotron frequencies: εac = ω/ωc. Figure 1 displays
ρxx versus εac for three selected values of the electron mobility µ = eτtr/m∗. For
µ ≈ 0.5 × 107 cm2 V−1 s−1 and almost linear behavior ρxx ∝ B is clearly depicted. As
the electron mobility increases to µ ≈ 1.5 × 107 cm2 V−1 s−1, MIRO are clearly observed; a
further increase to µ ≈ 2.5 × 107 cm2 V−1 s−1 leads to the appearance of negative resistance
states. It is observed that ρxx vanishes at εac = j for j integer. The period and phase of the
oscillations follow a pattern very similar to that observed in experiments [1, 3], with minima
at εac = j + δac, and maxima at ε = j − δac, with δac ≈ 1/5. It should be pointed out that
this value of δac depends on the representation of the density of states and of the precise value
of the width �. This fact may be the explanation for the different determination of δac in
experiments: Zudov et al [1, 2] found δac ≈ 1

2 whereas as for Mani et al [3, 4], δac ≈ 1
4 .

Let us now consider the nonlinear transport regime. In a typical experimental configuration
the electric field is not explicitly controlled, instead the longitudinal current Jx is fixed to a
constant value, while the transverse Hall current Jy cancels. Consequently equations (15)
lead to the conditions

Jx = ene

B
Ey + J (imp)

x (Ex, Ey), 0 = −ene

B
Ex + J (imp)

y (Ex, Ey). (23)

They represent two implicit equations for the unknowns Ex and Ey ; the equations can be
solved following a self-consistent iteration. However, it is easily verified that in general the

6
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following conditions apply: Ex 
 Ey and J (imp)
x 
 eneEy/B. It is then possible to explicitly

solve for Ex and Ey

Ey = B

ene

Jx − B

ene

J imp
x (Ex,Ey) ≈ B

ene

Jx − B

ene

Ex

(
∂J imp

x (Ex,Ey)

∂Ex

)
(Ex=0,Ey=BJx/ene)

Ex = B

ene

J imp
y (Ex,Ey) ≈ B

ene

J imp
y (Ex = 0, Ey = BJx/ene).

(24)

In order to derive the previous results we used the fact that J imp
x (Ex = 0, Ey) cancels because

of the angular integration. Equation (24) shows that the leading contribution to the Hall electric
field is given by the classical result Ecl

y = BJx/ene, and the Hall resistivity is given again by
the expression ρxy = B/ene. Instead, the expression for the nonlinear longitudinal resistivity
is given as

ρxx = Ex

Jx

= B

eneJx

J imp
y (Ex = 0, Ey = BJx/ene). (25)

Equations (15), (16) with the definitions in equations (17)–(20) apply in general to the
nonlinear regime in which both the longitudinal and Hall electric fields are arbitrarily strong.
However, for the conditions in experiments of current interest, it is reasonable to consider
the Ex weak limit. Then, the Hall field is accurately approximated by the classical result
Ey = BJx/ene, whereas ρxx can be computed from equation (25).

In the work of Zhang et al [24] the Hall frequency is defined as ωH = γ Jx(2π/e2ne)
1/2.

Here we assume that γ = 2; this can be justified if we observe that the integral in equation (16)
is evaluated in terms of the variable ω∗

q = qxJx/ene and it is dominated by contributions of
exchanged momentum in the region qx ≈ 2kF . Recalling that kF = √

2πne, it yields
ωH = Jx(8π/e2ne)

1/2. It is convenient to define a dimensionless control parameter εdc that is
given by the ratio of the Hall to the cyclotron frequencies

εdc = ωH

ωc

= 2eEyRc

h̄ωc

, Rc = vF

ωc

, (26)

and it can be interpreted as the ratio of the work of the electric Hall field associated with the
displacement of the guiding center of the cyclotron trajectory by 2Rc to the Landau energy
h̄ωc.

Next we consider the case of HIRO, the microwave radiation is switched-off, but the
current density is strong enough to induce Hall-field-induced magneto oscillations. Figure 2(a)
shows the differential resistance rxx = ∂ (Jxρxx) /∂Jx as a function of the magnetic field B
for a fixed current density Jx = 0.8 A m−1(ωH/2π ≈ 65 GHz). We observe clear differential
magnetoresistance oscillations. At the top of this figure the values of εdc = ωH/ωc are
displayed, suggesting an oscillation period �εdc ∼ 1. To confirm these observations, in
figure 2(b) the Hall-field-induced correction �rxx = rxx − rxx(Jx = 0) is plotted as a function
of εdc. Magnetoresistance oscillations are clearly observed up to the seventh order. The first
peak appears at εdc ∼ 0.95, for higher ε oscillations the maxima occur at εdc ≈ j , with j an
integer; while the minima are very close to εdc ≈ j + 1/2. These results are very similar to the
experimental findings of Zhang et al [24], although the localization of maxima (minima) close
to integer (half-integer) is here obtained when γ = 2, whereas in that work they correspond
to the selection γ = 1.9. The amplitude of the differential resistance oscillations displays a
rapid decay as the magnetic field decreases. This decay can be parametrized by the Dingle
factor δ = exp (−π/ωcτs).

It is now interesting to consider the magnetoresistance behavior when the system is subject
simultaneously to ac (microwave) and dc (Hall) fields. In the experimental work of Zhang

7
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(b)

Figure 2. (a) Differential resistance rxx(B). (b) Correction to differential resistance �rxx =
rxx − rxx(Jx = 0) versus εdc. Here µ ≈ 2.5 × 107 cm2 V−1 s−1, the other parameter are the same
as in figure 1.

et al [25] it was found that the dc excitation affects the microwave photoresistance in a
nontrivial way. In particular, it was found that maxima (minima) in the differential resistance
can evolve into minima (maxima) and back as a result of an interplay of the ac- and dc-induced
effects. If MIRO and HIRO behavior are governed by the parameters εac and εdc respectively,
the question arises whether there is a simple parameter that describes resistance oscillations
when the system is subject to both ac and dc excitations. Remarkably, it was found that
resistance oscillation data display a periodic behavior if plotted as a function of [25]

εeff = εac + εdc = ω + ωH

ωc

. (27)

Similar results arise within the present theoretical formalism. Figure 3 shows the differential
resistance rxx as a function of εeff . Results are displayed for three values of the current
density: (a) Jx = 0, (b) Jx = 0.05 A m−1, (c) Jx = 0.1 A m−1. It is observed that the
magnetoresistance oscillations are periodic in εeff with a period εeff ≈ 1. Furthermore, it is
observed that the positions of both the maxima and minima of rxx change as J is increased.
For the Jx = 0 the minima and maxima are localized at εeff ≈ j + 1/5 and εeff ≈ j − 1/5
respectively, corresponding to the MIRO case. With increasing Jx the positions of the first

8
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Figure 3. Differential resistance rxx as a function of εeff = (ω + ωH )/ωc obtained under the
combined effects of microwave and high density current excitations. The values of the current
densities are: Jx = 0,Jx = 0.05 A m−1, and Jx = 0.1 A m−1. The other parameter are the same
as in figure 1.

maxima and minima at around εeff are slightly modified. However as we approach the region of
separated Landau levels the positions of the minima and maxima become progressively similar
to those corresponding to the HIRO regime, i.e. εeff ≈ j + 1/2 and εeff ≈ j , respectively.
The physical origin to these results can be traced down into the structure of equation (16),
observing the arguments of the distribution functions, the electron transitions can be interpreted
as a combination of vertical transitions between Landau levels as a result of photon absorption
and the tunneling between Hall-field-tilted Landau levels. A more detailed analysis and
comparison with the experimental results will be presented elsewhere.

3. Conclusions

We have presented a model to describe the nonlinear magnetoresistance of a 2DEG subjected
to microwave irradiation. The method to obtain the exact solution of the time-dependent
Schrödinger equation in the presence of arbitrarily strong electric, magnetic and microwave
fields exploits the symmetries of the problem. The unitary transformation W is written in terms
of the noncommuting guiding center and relative coordinates operators; the corresponding
coefficients are obtained from the solutions to the classical equations of motion. Based on
this formalism, we provide a Kubo-like formula that takes into account the oscillatory Floquet
structure of the problem. We present results for the microwave-induced resistivity oscillations
(MIRO) and the Hall-induced resistivity oscillations (HIRO) that are in good agreement with
the observations of recent experiments. Hence, we provided a framework to study electron
transport properties of a 2DEG in the presence of ac and dc excitations.
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